27,689 research outputs found

    Initial stages of cavitation damage and erosion on copper and brass tested in a rotating disk device

    Get PDF
    In view of the differences in flow and experimental conditions, there has been a continuing debate as to whether or not the ultrasonic method of producing cavitation damage is similar to the damage occurring in cavitating flow systems, namely, venturi and rotating disk devices. In this paper, the progress of cavitation damage during incubation periods on polycrystalline copper and brass tested in a rotating disk device is presented. The results indicate several similarities and differences in the damage mechanism encountered in a rotating disk device (which simulates field rotary devices) and a magnetostriction apparatus. The macroscopic erosion appears similar to that in the vibratory device except for nonuniform erosion and apparent plastic flow during the initial damage phase

    Absence of ferromagnetism in Mn- and Co-doped ZnO

    Full text link
    Following the theoretical predictions of ferromagnetism in Mn- and Co-doped ZnO, several workers reported ferromagnetism in thin films as well as in bulk samples of these materials. While some observe room-temperature ferromagnetism, others find magnetization at low temperatures. Some of the reports, however, cast considerable doubt on the magnetism of Mn- and Co-doped ZnO. In order to conclusively establish the properties of Mn- and Co-doped ZnO, samples with 6 percent and 2 percent dopant concentrations, have been prepared by the low-temperature decomposition of acetate solid solutions. The samples have been characterized by x-ray diffraction, EDAX and spectroscopic methods to ensure that the dopants are substitutional. All the Mn- and Co-doped ZnO samples (prepared at 400 deg C and 500 deg C) fail to show ferromagnetism. Instead, their magnetic properties are best described by a Curie-Weiss type behavior. It appears unlikely that these materials would be useful for spintronics, unless additional carriers are introduced by some means.Comment: 23 pages, 9 figures. submitted to J. Mater. Chem 200

    Electronic phase separation in the rare earth manganates, (La1-xLnx)0.7Ca0.3MnO3 (Ln = Nd, Gd and Y)

    Full text link
    All the three series of manganates showsaturation magnetization characteristic of ferromagnetism, with the ferromagnetic Tc decreasing with increasing in x up to a critical value of x, xc (xc = 0.6, 0.3, 0.2 respectively for Nd, Gd, Y). For x > xc, the magnetic moments are considerably smaller showing a small increase around TM, the value of TM decreasing slightly with increase in x or decrease in . The ferromagnetic compositions (x xc) show insulator-metal (IM) transitions, while the compositions with x > xc are insulating. The magnetic and electrical resistivity behavior of these manganates is consistent with the occurrence of phase separation in the compositions around xc, corresponding to a critical average radius of the A-site cation, , of 1.18 A. Both Tc and TIM increase linearly when < rA > > or x xc as expected of a homogenous ferromagnetic phase. Both Tc and TM decrease linearly with the A-site cation size disorder at the A-site as measured by the variance s2. Thus, an increase in s2 favors the insulating AFM state. Percolative conduction is observed in the compositions with > < rAc >. Electron transport properties in the insulating regime for x > xc conforms to the variable range hopping mechanism. More interestingly, when x > xc, the real part of dielectric constant (e') reaches a high value (104-106) at ordinary temperatures dropping to a very small (~500) value below a certain temperature, the value of which decreases with decreasing frequency.Comment: 27 pages; 11 figures, Submitted to J.Phys:Condens Matte

    The effects of atmospheric refraction on the accuracy of laser ranging systems

    Get PDF
    Correction formulas derived by Saastamoinen and Marini, and the ray traces through the refractivity profiles all assume a spherically symmetric refractivity profile. The errors introduced by this assumption were investigated by ray tracing through three-dimensional profiles. The results of this investigation indicate that the difference between ray traces through the spherically symmetric and three-dimensional profiles is approximately three centimeters at 10 deg and decreases to less than one half of a centimeter at 80 deg. If the accuracy desired in future laser ranging systems is less than a few centimeters, Saastamoinen and Marini's formulas must be altered to account for the fact that the refractivity profile is not spherically symmetric
    corecore